CW-complex as an adjuction space

정리 1 (1) Let X be a $C W$-complex of dimension p and $\left\{e_{\alpha}\right\}$ be p-cells in X with a characteristic function $\varphi_{\alpha}: D_{\alpha}^{p} \rightarrow X$.
$\Rightarrow X \cong \coprod D_{\alpha} \cup_{f} X^{p-1}, \quad f=\left.\coprod \varphi_{\alpha}\right|_{\partial D_{\alpha}}$
(2) Conversely, Y is a $C W$-complex of dim p-1 and $f: \amalg \partial D_{\alpha}^{p} \rightarrow Y$
$\Rightarrow X=\coprod D_{\alpha} \cup_{f} Y$ is a $C W$-complex with $X^{p-1}=Y$.

증명

(1) Let $E=\coprod D_{\alpha} \coprod X^{p-1}$.

Define $h: E \xrightarrow{\alpha} X$ by $h=\left(\amalg \varphi_{\alpha}\right) \coprod($ incl. $)$.
It suffices to show that h is a quotient map.
Let $C \subset X$ with $h^{-1}(C)$ closed in E. Then
$\Rightarrow\left\{\begin{array}{l}C \cap X^{p-1}=h^{-1}(C) \cap X^{p-1} \text { is closed in } X^{p-1} \\ h^{-1}(C) \cap D_{\alpha} \text { is closed in } D_{\alpha}, \forall \alpha \text { and so compact. }\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}C \cap \bar{e}_{\beta}=\left(C \cap X^{p-1}\right) \cap \bar{e}_{\beta} \text { is closed in } \bar{e}_{\beta} \text { whenever } \operatorname{dime}_{\beta} \leq p-1 \\ C \cap \bar{e}_{\alpha}=h\left(h^{-1}(C) \cap D_{\alpha}\right): \text { compact and so closed in } \bar{e}_{\alpha} .\end{array}\right.$
$\Rightarrow C$ is closed in X.
(2) $\left\{\begin{array}{l}Y: \text { Hausdorff } \\ \left(\amalg D_{\alpha}, \coprod \partial D_{\alpha}\right): \text { collared pair } \\ \amalg D_{\alpha} \amalg Y \xrightarrow{q} X\end{array}\right.$
$\Rightarrow X$: Hausdorff.
이제 CW-complex의 성질을 만족하는지 check하자. 우선 (1)은 당연하고,
(2) $\varphi_{\alpha}=\left.q\right|_{D_{\alpha}}$ 로 정의하면, characteristic function이 된다. 왜냐하면, 앞에서 $\left.q\right|_{D_{\alpha}-\partial D_{\alpha}}$ 가 homeomorphism 임을 알기 때문이다.
(3) $\bar{e}_{\alpha}=\varphi_{\alpha}\left(D_{\alpha}\right)=q\left(D_{\alpha}\right)$ and note that $q\left(\partial D_{\alpha}\right)$ is compact and hence meets only finitely many cells.
(4) Let $X=\left\{e_{\beta}\right\}$ and $Y=\left\{e_{\gamma}\right\}$.
$A \subset X$ with $A \cap \bar{e}_{\beta}$ closed in $\bar{e}_{\beta}, \forall \beta$
$\Rightarrow\left\{\begin{array}{c}q^{-1}(A) \cap Y=A \cap Y \text { is closed in } Y, \\ \text { since }(A \cap Y) \cap \bar{e}_{\gamma}=A \cap \bar{e}_{\gamma} \text { is closed in } \bar{e}_{\gamma} . \\ q^{-1}(A) \cap D_{\alpha}=q^{-1}\left(A \cap \bar{e}_{\alpha}\right) \cap D_{\alpha}: \text { closed in } D_{\alpha}\end{array}\right.$
$\Rightarrow q^{-1}(A)$ is closed in $\coprod D_{\alpha} \coprod Y$.
$\Rightarrow A$ is closed.

정리 2 (1) Let X be a $C W$-complex.
Then X is a coherent union of $X^{0} \subset X^{1} \subset X^{2} \subset \cdots$.
(2) Conversely, if X is a coherent union of $C W$-complexes $X_{0} \subset X_{1} \subset X_{2} \subset$ \cdots with X_{p}, the p-skeleton of X_{p+1}, then X is a $C W$-complex with $X^{p}=X_{p}$.
증명 Easy from the definitions.(숙제 10)

